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Selective communication and information processing by excitable systems

V. B. Kazantsev
Radiophysical Department, Nizhny Novgorod State University, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia

~Received 6 March 2001; published 19 October 2001!

The phenomena of selective response of an excitable system to external pulse stimulation relating to inter-
neuron communication and information processing problems are discussed. Subthreshold dynamics of the
FitzHugh-Nagumo-like excitable system modeling of a neuron with the synaptic input is investigated. It is
shown that the system response on various incoming information messages can be described by one- and
two-dimensional linear and nonlinear point maps. Nonlinear integrating and resonant properties of the system
are analyzed.
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I. INTRODUCTION

The problems of interneuron communication and inform
tion processing in central nervous system~CNS! have been
intensively studied in recent years. The investigation of
formation pathways in CNS, the functions of synaptic tra
mission, information encoding, and communication conce
both fundamental scientific understanding of global C
functions and related applications@1–9#. Then, the design o
artificial systems based on the principles of neurodynam
intensively develops in connection with possible engineer
applications. Take, for instance, cellular neural networ
reaction-diffusion lattices, optical neurocomputers, etc.@10–
18#

At single cell level the problem of neuron communicati
concerns the dynamics of a neuron stimulated by pulse
quences with variable interspike interval that represent
fact, encoded information messages@2–8#. Typically, the
single neuron may have one or many different synaptic c
nections with other neurons and should produce adeq
response on various incoming signals. From the behavi
or functional point of view there are two major types of t
response@2–5#. The first type~integrate-and-fire neurons!
summarizes or integrates the incoming signals and w
reaching the excitation threshold generates the resp
pulse. The number of input pulses to be integrated is defi
by the interspike interval characterizing the message and
the intrinsic characteristics of the cell. Neurons of the sec
type exhibit a resonant response. They fire when the s
frequency is in a resonant relation with the intrinsic freque
cies of the cell@2–5,19,20#. Such neurons can communica
only at selective frequencies@3–5#. Recent experiments hav
confirmed that the resonant neurons play the key role
functional neuronal circuits responsible for different glob
functions of the CNS. For example, the thalamocortical c
cuit responsible for the associative memory CNS funct
uses;40 Hz frequency, the olivocerebellar circuit at;10
Hz plays a crucial role in the motor performance and mo
ment coordination@2,3#.

In modeling, various dynamical systems accounting
functional properties of real neurons can be used@5#. In par-
ticular, for integrating response one can use FitzHu
Nagumo-like excitable systems with relaxation dynami
Resonant response may occur in the systems oscillating
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low the threshold at a limit cycle~true oscillations! or near a
fixed point of focus type~damped oscillations!.

In this paper I consider an excitable dynamical system
FitzHugh-Nagumo type capable ofintegrating, resonant,
and integrating at resonanceresponses on various informa
tion messages. It is shown that the problem of the respo
can be reduced to the analysis of 1D~one-dimensional! and
2D linear and nonlinear point maps. Section II describes
model, its phase space and basic properties. In Sec. III
1D nonlinear point map describing nonlinear integrating
sponse is analytically obtained and analyzed. Section IV
devoted to possible responses on stimulation when the
tem exhibits damped oscillation. In the linear approximati
the 2D point map describing basic resonant properties is
rived. Nonlinear resonance response is analyzed with the
nonlinear map. Section V illustrates the possibility of r
sponse on ‘‘inhibitory’’ stimulation. Section VI proposes
brief discussion of the results.

II. MODEL

From the functional or behavioral point of view the sy
aptic transmission of excitation from cell to cell may be d
scribed as follows@2,5#. An input pulse forms a perturbatio
at the postsynaptic cell called postsynaptic potential~PSP!.
The excitatory postsynaptic potential~EPSP! depolarizes the
membrane bringing neuron to its excitation threshold. Wh
the threshold is reached, the neuron exhibits excitation p
or action potential. The inhibitory postsynaptic potent
~IPSP! hyperpolarizes the neuron tending to decrease its
ing activity. The synaptic transmission is unidirection
hence in modeling one can consider the PSP as an exte
perturbation of the neuron. Let the state~membrane poten-
tial! of the single neuron be described by the variablex(t)
5x(t,x0) evolving from some initial conditionsx05x(t
50). In the simple approximation we may take into accou
the PSP perturbation by the instant jump~increase for the
EPSP and decrease for the IPSP! of the state variable~mem-
brane potential! at time momentt0 when the input pulse
comes. Then, the state of the neuron fort.t0 is given by

x~ t !5x~ t,xt0
!, xt0

5x~ t,x0!1up . ~1!
©2001 The American Physical Society10-1
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In other words, att5t0 the input pulse sets the initial con
ditions for the system. In such an approximation we ha
ignored the dynamics of the synaptic transmission takin
into account with just one parameterup characterizing the
‘‘ strength’’ of synapse. It is positive for EPSP,up.0, and
negative for IPSP,up,0.

The single neuron dynamicsx(t) can be described by th
following two-dimensional FitzHugh-Nagumo-like system

ẋ5 f ~x!2y,

ẏ5«@g~x!2y2J#, ~2!

wheref (x)5x2x3/3, J.0, and«.0 and the functiong(x)
has the form

g~x!5H ax, if x,0,

bx, if x>0.

Let the system~2! be in theexcitablemode. Its phase portrai
for «!1 is shown in Fig. 1~a!. The system has three fixe
points,O1(x1 ,y1), O2(x2 ,y2) andO3(x3 ,y3). The pointO3
is unstable~node or focus!, O2 is of saddle type, andO1 is a
stable node or focus depending on the parameter values.
stable fixed pointO1 defines the system rest state~rest po-
tential!. The incoming separatrix of the saddle,W1

i , accounts
for the excitation threshold~threshold manifold!. It means
that for a strong enough perturbation exceeding the thres
the system exhibits a long excursion in the phase plane fo
ing the response pulse. Note, that for suitable parameter

FIG. 1. ~a! Qualitative phase portrait of system~2! for «!1.
W1,2

i andW1,2
o denote the incoming and outgoing separatricies of

saddleO2, respectively.~b! One-dimensional dynamics of Eq.~2!

for «→0 at line ȳ5y1.
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ues the system~2! becomes auto-oscillating with a limi
cycle describing periodic sequences of excitation pulses~ac-
tion potentials! @5#.

Let the system~2! get a ‘‘synaptic’’ input~1! in the form
of a periodic sequence of pulses with the interspike inter
tp . Each pulse at the time momentstn5tpn, n
50,1,2, . . . , perturbs the current state of the system acco
ing to Eq. ~1!, after that, it evolves autonomously. For e
ample, let the system initially be at rest, i.e., at the fix
point O1. If the strength of synapseup is large enough, then
even a single pulse brings the system over the thresh
~separatrixW1

i ) and the excitation pulse is generated@Fig.
1~a!#. It is the case of ‘‘strong synapse’’ and the syste
represents a pulse follower. For example, in CNS cerebe
Purkinje cells getting excitatory input from climbing fibe
provide a response for sure on each incoming pulse@3#. Let
us focus on the opposite situation whenup is low enough and
the system has to accumulate perturbations for some
evoking the response on the definite number of pulses~two,
three, etc.!. In this case the subthreshold dynamics of~2!
plays a major role.

III. NONLINEAR INTEGRATING RESPONSE

Let us consider the system~2! when«→0. Then,

ẋ5 f ~x!2y,

y' ȳ5const. ~3!

If the system~2! initially is at rest ~fixed point O1), then
under stimulation~1! its dynamics occurs at the lineȳ5y1
and is described by Eqs.~3! @Fig. 1~b!#. Let us assumex5
211j. Then, in the interval between the rest point and
threshold point the functionf (x) can be represented with it
power expansion

f ~211j!52 2
3 1j21O~j3!. ~4!

In this case, the coordinates of the fixed pointO1 can be
obtained explicitly,

x15
a222Aa224~a1J22/3!

2
,

~5!

y15
a~a22!2aAa224~a1J22/3!

2
2J.

Introducing a new variablez5x2x1 and using Eqs.~3!–~5!

one can show that at the lineȳ5y1 the dynamics is given by
the equation

ż5z22zzth , ~6!

wherezth denotes the threshold point@Fig. 1~b!#,

zth5Aa224~a1J22/3!2a.

e

0-2
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Let the system be stimulated with the interspike inter
tp . It follows from Eq. ~1! that for two neighboring pulse
Eq. ~6! satisfies the conditions

z~ t50!5zn.0, z~ t5tp!5zn112up.0,

wherezn denotes the state of the system whenn pulses have
been accepted. Then,

tp5E
zn

zn112up dz

z22zzth

52
1

zth
ln

~zn112up!~zn2zth!

zn~zn112up2zth!
. ~7!

Hereup,zth , zn,zth , i.e., at then step the system has no
yet reached the threshold. In the interval@up ,zth# the equa-
tion ~7! defines 1D nonlinear point map,

zn115F~zn!5
zn@up2~up1zth!exp~2zthtp!#2upzth

zn@12exp~2zthtp!#2zth
.

~8!

The behavior of the map~8! is illustrated in Fig. 2. It has
two fixed points

z1,2* 5
zth1up

2
6A~zth1up!2@12exp~2zthtp!#24upzth

4@12exp~2zthtp!#
,

if the parametersup andtp satisfy the inequality

tp>
2

zth
ln

zth1up

zth2up
. ~9!

The functionF(zn) is monotonically increasing with

FIG. 2. Behavior of the nonlinear 1D map~8!. Parameter values
a50.2,J50.4. ~1! The map has two fixed points,up50.2,tp59.
~2! Saddle-node (11) bifurcation,up50.2,tp57.24. ~3! No fixed
points,up50.2,tp55. Arrows show the map trajectory correspon
ing to excitation. Units are arbitrary~a.u.!.
05621
l

F8~zn!5
zth

2 exp~2zthtp!

$zn@12exp~2zthtp!#2zth%
2
.0,

It follows from Eq. ~8! that F(up).up , henceF8(z2* ),1,
and the fixed pointz2* is stable,F8(z1* ).1 andz1* is un-
stable. Exact equality condition in Eq.~9! indicates saddle
node or11 bifurcation resulting in the disappearance of t
fixed points~Fig. 2!. The inequality~9! defines the region in
the parameter plane (up ,tp) shown in Fig. 3. It is located
above the boundary curveC`

0 . Here the system does no
respond to the stimulation at all because all trajectories of
map are attracted by the stable fixed pointz2* located below
the threshold. Note that in this region, the characteristic
laxation time of the system is much shorter than the int
spike interval, hence it has enough time to recover its r
state until the next pulse in the sequence has come.

When the map~8! has no fixed points, its trajectories afte
some number of stepsN, overcome the threshold,zN.zth . It
means that the system responds onN-pulse message. Let u
consider a doublet stimulusN52. Using the map~8! with
initial conditions z15up one can show that the conditio
z2.zth is satisfied if the parameter values satisfy the inequ
ity

0,tp,tp
25

2

zth
ln

up

zth2up
. ~10!

In Fig. 3 this region is located below the curveC2
0. Similarly,

the system responds on a triplet,z3.zth , if

tp
2,tp,tp

35
1

zth
ln

up~zth1up!

~zth2up!2
. ~11!

FIG. 3. Parameter plane (up ,tp) illustrating integrating re-
sponse on pulse stimulation~doublets, triplets, etc.!. Dashed curves,
C2

0, C3
0, C`

0 , are obtained analytically using the 1D map~8!, solid
curves,C2

0, C3
0, C`

0 , are calculated numerically using Eq.~2! with
«50.003. The regions restricted between curves,CN - CN11 corre-
spond to the response onN11 number of pulses. Parameter value
a50.2,J50.4. Units are arbitrary~a.u.!.
0-3
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This inequality defines the region located between the cu
C2

0 andC3
0 ~Fig. 3!. By increasing the number of pulses on

can obtain the sequence of boundary curvesCN
0 accumulat-

ing to C`
0 with N→`.

To verify the results Fig. 3 also shows the curvesCN
«

obtained in numerical simulation of the system~2! with Eq.
~1! for «50.003. Here the curveC20

« estimates the boundar
curveC`

« . There is a good agreement between the analyt
and numerical results. Growing difference between
curves with increasingN andup can be explained using th
phase portrait of system~2! ~Fig. 1!. For nonzero« the vari-
able y(t) is slightly increasing below the nullclineg(x)2J
bringing the system to the region below the fixed pointO1 ,
x,x1 ~refractory state!. Then, to overcome the threshold th
value ofup should be higher at the next coming pulse. Th
in the parameter plane (up ,tp) the curvesCN

« goes below
than the corresponding curvesCN

0 .
Let us fix the parameterup characterizing the ‘‘strength’’

of the EPSP~1!. Then, for variable characteristic of the e
ternal signal~interspike intervaltp) the system can select th
doublets, triplets, and more complex messages summar
or integratingthem in the single response pulse. For illust
tion, the four-pulse response is shown in Fig. 4. As expec
the trajectory of the map~8! lies near the lineȳ5y1 and
jumps over the threshold atN54 @Fig. 4~a!#. Figure 4~b!
shows time evolution of the system~2!. To be excited it
accumulates~integrates! perturbations below the threshold
To describe further evolution of the system~not considered
here! one must take into account the response pulse dura
and the refractory period.

FIG. 4. A response onN54 pulse message.~a! The map trajec-
tory in the phase plane.~b! Time evolution of the system~2!. Pa-
rameter values:a50.2, b510, J50.4, «50.1, up50.33, andtp

56.8. Units are arbitrary~a.u.!.
05621
es

al
e

,

ng
-
d,

on

In possible applications of the model such selectivity to
number of input pulses can be used when designing the
of a conventional neurocomputer. It represents a network o
many intercoupled cells with programmable connections
makes processing by means of temporal summation or i
gration of incoming signals@16#.

IV. RESONANT RESPONSE

For suitable parameter values~for example, for increasing
«) the fixed pointO1 of system~2! acquires oscillatory prop-
erties~Fig. 5!. Let us suppose that it is a stable focus w
eigenvaluesl1,252h6Iv,

h5
«2 f x1

2
.0, v5A«~a2 f x1!2

~ f x12«!2

4
, ~12!

with f x1, x2512x1,2
2 , respectively. Hence, near the rest po

the system~2! displays damped oscillatory behavior.

A. Linear approximation

First, let us consider a linear approximation of the syst
~2! when it evolves below the threshold. Linearizing Eq.~2!
near the fixed pointO1 we obtain

ż5 f x1z2w,

ẇ5«~az2w!, ~13!

with z5x2x1 andw5y2y1. Initial conditions for Eqs.~13!
are defined by Eq.~1!. Then, for two neighboring pulses

z~ t50!5zn , w~ t50!5wn ,
~14!

z~ t5tp!5zn112up ,w~ t5tp!5wn11 ,

where the point (zn ,wn) defines the state of the system wh
n pulses have been accepted. Solving linear problem E
~13!–~14! yield the following two-dimensional linear poin
map

zn115azn1bwn1up ,

wn115czn1dwn , n51,2, . . . , ~15!

FIG. 5. Qualitative phase portrait of the system~2! when it has
oscillatory dynamics near the fixed pointO1. The tangent lineL(z)
approximates the separatrix~threshold manifold! W1

i near the fixed
point O2.
0-4
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with

a5exp~2htp!Fcos~vtp!1
f x11h

v
sin~vtp!G ,

b52exp~2htp!
sin~vtp!

v
,

c5exp~2htp!S v1
~ f x11h!2

v D sin~vtp!,

d5exp~2htp! Fcos~vtp!2
f x11h

v
sin~vtp!G .

The single fixed point of the map.~15! has the coordinates

z* 5
up~12d!

~12a!~12d!2bc
, w* 5

upc

~12a!~12d!2bc
,

and the multipliers

m1,25exp@~2h6Iv!tp#).
~16!

Hence the fixed point is a stable focus that attracts all
trajectories of the linear point map~15!.

For simplicity, let us approximate the threshold manifo
W1

i by the following linear function,

w5L~z!52y11~ f x22lx2!~z1x1!, ~17!

lx25
f x22«

2
2A~ f x2!2«)2

4
2«~a2 f x2!.

It is tangent to the separatrix at the fixed pointO2 ~Fig. 5!.
Let the system initially be at rest, hencez15up ,w150. The
excitation threshold for single pulse perturbation,n51, is
given by

z̄th52x11
y1

f x22lx2
.

For up, z̄th iterating the map~15! with the initial conditions
one can obtain the point (zN ,wN). Then, the inequality

wN,L~zN!,

ensures that the system evokes response onN pulses in the
sequence. Figure 6 illustrates the response regions for
blets D2, and tripletsD3, in the parameter plane (up ,tp).
The dashed curveC` , binds the region below the curv
corresponding to the fixed point located above the thresh
w* ,L(z* ). Since it is a stable focus and all the trajector
are attracted, this inequality provides sufficient conditio
for excitation. Note that when it lies below the thresho
w* .L(z* ), the trajectories can reach the threshold and
system can be excited at some number of pulses~Fig. 6!.
05621
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Since the system~2! has oscillatory properties the re
sponse regions~Fig. 6! appear in a resonance way. The line
resonance relation for damped oscillation near the pointO1
is

tp
k5

2pk

v
,k51,2, . . . , ~18!

If it is satisfied, the map~15! splits into a pair of linear
one-dimensional maps

zn115exp~2htp
k!zn1up ,

wn115exp~2htp
k!wn ,

with the stable fixed point

z* k5
up

12exp~2htp
k!

, w* k50. ~19!

In this case the sufficient conditions for excitation becom
z* k. z̄th . Using Eqs.~17! and~19! we find that for response
at exact resonance

up.up
k5 z̄th@12exp~2htp

k!#. ~20!

It shows that, for damped oscillation the resonance regi
exponentially decay for increasingk ~Fig. 6!. Note that the
regions~their maxima! are slightly shifted relative totp

k in
the result of the finite slope of the lineL(z) approximating
the threshold~Fig. 5!.

B. Nonlinear resonance response

Let us now take into account nonlinearity of the syste
~2!. Along with the appearance of the resonance beha

FIG. 6. Resonant response in linear approximation. The reg
of doublet and triplet response are filled with light and dark gr
colors, respectively. The curveC` corresponds to the location o
the fixed point (z* ,w* ) of the map~15! at the threshold lineL(z).
Parameter values:a50.5, J50.15, and«50.1. Units are arbitrary
~a.u.!.
0-5
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predicted by linear theory one may expect various nonlin
effects including a shift of the response curves and respo
at composite frequencies. In particular, for higher values
up when approaching the separatrixW1

i the oscillation be-
comes nonisochronous and the system evolves for a
time near the separatrix threshold. Furthermore, the sep
trix itself is given by a nonlinear curve~Fig. 5!.

The trajectories of the system~2! with the conditions~14!
define nonlinear mapF, (zn ,wn)→(zn11 ,wn11). For the
particular trajectory the functionF can be derived by numeri
cal integration of Eqs.~2!. If after N steps the trajectory
jumps over the separatrixWi

1 ~also numerically calculated!,
then the system responds toN-pulse message. Figure 7 illus
trates the response regions for doubletsD2

1 and tripletsD3
1 .

As expected the structure of the bifurcation set has reson
character with exponential decay~20!, but it is quite different
from that obtained in linear approximation. The curves
triplet response atk52,3 form two separate regions. Furthe
more, the system may respond to either doublets or trip
for values oftp that are even antiphase~18! according to the
linear theory. This is the result of nonisochronous behav

Note that the response on increasing number of pu
(N54,5, . . . ,) becomes more complicated. It is also r
stricted within a number of separate regions~not shown
here!. For example, the behavior of the 2D nonlinear m
obtained numerically at some point in the (up ,tp) plane for
N58 is illustrated in Fig. 8~a!. Before reaching the threshol
the trajectory behaves quite complex. Time evolution of
system~2! is shown in Fig. 8~b!. Here the excitation pulse
~action potential! appears after long lasting subthreshold o
cillation.

Thus, excitable systems with oscillatory subthreshold
havior even when the oscillations are damped can provid
selective communication with nonlinearresonantproperties.
There are separate regions of selective response on mes
with definite number of pulses, hence the system is nonlin

FIG. 7. Nonlinear resonant response regions,D2
1 andD3

1 , cor-
responding to the doublet and triplet EPSP stimuli, respectiv
Parameter values:a50.5, J50.15, and«50.1. Units are arbitrary
~a.u.!.
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integratoras well. In possible applications the model may
useful in the design of anoscillatory neurocomputer. Its pro-
cessing functions are based on resonance communicatio
tween the units~neurons! and their connectivity@16#.

V. NONLINEAR RESPONSE ON IPSP

Many neurophysiological experiments have shown t
neurons when stimulated may fire at hyperpolarized s
@3,4#. It means that inhibition of the cell~IPSP! may also
cause an action potential. Qualitative models have explai
such possibility by complex behavior of the threshold ma
fold or by the presence of the second excitation threshol
the hyperpolarized state@4,5#. The models~1! and ~2! may
also exhibit nonlinear integrating and resonant response
the IPSP. Note that in the regionx,x1 of the phase plane the
separatrixWi

1 ~threshold manifold! goes up~Fig. 5! provid-
ing the possibility of excitation caused by ‘‘inhibition,’’up

,0. The regions of the IPSP response on doublets (D2
2) and

triplets (D3
2) numerically calculated are presented in Fig.

Their structure is quite similar to that obtained for the EP
stimulation. The triplet response occurs near the dou
within two separate regions at each resonance numbek
52,3. Then, for variable interspike intervaltp , the system
responds on definite number of pulses coming at selec
frequencies. Note that more complex response may occu
the neighborhood ofD2,3

2 . For illustration, the trajectory of
the nonlinear map and time evolution of the system wh
responding onN512 number of the IPSP stimuli are show
in Figs. 10~a! and 10~b!, respectively.

y.

FIG. 8. Resonant response of the system~1! and~2! integrating
the message ofN58 EPSP pulses. Parameter values:a50.5, b
510, J50.15,«50.1, up50.172, andtp527.5.~a! The trajectory
of the nonlinear mapF leading to excitation.~b! Time evolution of
the system~2!. Units are arbitrary~a.u.!.
0-6
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VI. DISCUSSION

The paper has discussed some problems of commun
tion and information processing by excitable systems. T
FitzHugh-Nagumo-like model with a threshold manifo
based onfunctional properties of neurons is investigated.
has been shown that the analysis of the system respon
information messages taken here as simple periodic
quences of pulses and packages of two, three or more pu
with a characteristic interspike interval may be reduced
the analysis of transient trajectories and limit sets of 1D a
2D linear and nonlinear point maps. The bifurcation sets
lustrating different responses have been obtained and
lyzed. It is shown that if the system has relaxation subthre
old dynamics the response appears when integrating
definite number of spikes. The regions of the response h
been analytically estimated and numerically verified. Wh
the dynamics is oscillatory, the system responds integra
signals at the selective frequencies. The response is ch
terized by both oscillations near rest point and by the n
linear behavior near the threshold manifold. Moreover,
system may selectively respond on the inhibitory stimu
Either type of the response is defined by the dynamics of
system~nonisochronous damped oscillation! and by the char-
acteristics~strength and sign! of the ‘‘synaptic’’ input.

In summary, the excitable system modeling single neu
dynamics even taken apart from neuron assemblies may
hibit various information processing features including in

FIG. 9. Nonlinear resonant response on the IPSP stimuli.
regionsD2

1 and D3
1 correspond to the response on doublet a

triplet messages, respectively. Parameter values:a50.5, J50.15,
and«50.1. Units are arbitrary~a.u.!.
.

l,
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gration, selection on frequency, and integration at selec
frequencies. Hence, it is, in fact, aminimal processing unit.
The next task will be the integration of such units in ne
works to reproduce various functions of CNS such as p
cessing of visual information, associative memory, etc.
difference with various neural network models~oscillatory
networks, conventional networks, cellular neural networ
reaction diffusion lattices, etc.! the assemblies of excitabl
units might exhibit processing at single ‘‘cell level.’’ Suc
units, of course, have relatively complex internal dynami
but display clear functions.
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